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What Is Medical Imaging Informatics?
• Signal Processing

– Digital Image Acquisition 
– Image Processing and Enhancement

• Data Mining
– Computational anatomy
– Statistics
– Databases
– Data-mining
– Workflow and Process Modeling and Simulation

• Data Management
– Picture Archiving and Communication System (PACS) 
– Imaging Informatics for the Enterprise 
– Image-Enabled Electronic Medical Records 
– Radiology Information Systems (RIS) and Hospital Information Systems (HIS)
– Quality Assurance 
– Archive Integrity and Security 

• Data Visualization
– Image Data Compression 
– 3D, Visualization and Multi-media 
– DICOM, HL7 and other Standards 

• Teleradiology
– Imaging Vocabularies and Ontologies
– Transforming the Radiological Interpretation Process (TRIP)[2]
– Computer-Aided Detection and Diagnosis (CAD).
– Radiology Informatics Education 

• Etc.

http://en.wikipedia.org/wiki/Imaging_informatics#cite_note-1
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What Is The Focus Of This Course?
Learn using computational tools to maximize information and 

knowledge gain

ImageMeasurements Model knowledge

Improve
Data 

collection
Refine 
Model

Pro-active

Extract  
information

Compare 
with

modelRe-active
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Challenge:  Maximize Information Gain

1. Q: How can we estimate quantities of interest from a 
given set of uncertain (noise) measurements?
A: Apply estimation theory (1st lecture by Norbert)

2. Q: How can we measure (quantify) information?
A: Apply information theory (2nd lecture by Wang)
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Estimation Theory: Motivation Example I
Gray/White Matter Segmentation

Intensity

0.0
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0.6

0.8

1.0

Hypothetical Histogram

GM/WM overlap 50:50;
Can we do better than flipping a coin?
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Estimation Theory: Motivation Example II

D. Feinberg Advanced MRI Technologies, Sebastopol, CA

Goal: Capture dynamic signal on a 
static background

High signal to noise

Poor signal to noise
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Estimation Theory: Motivation Example III

Goal:
Capture directions 
of fiber bundles

Diffusion Spectrum Imaging – Human Cingulum Bundle

Dr. Van Wedeen, MGH
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Θ: target of interest 
and unknown

ρ: measurement

: Estimator - a good 
guess of Θ based on 
measurements 

Θ
)

Cartoon adapted from: Rajesh P. N. Rao, Bruno A. Olshausen Probabilistic 
Models of the Brain. MIT Press 2002. 

http://www.amazon.com/s/ref=rdr_ext_aut?_encoding=UTF8&index=books&field-author=Rajesh P. N. Rao
http://www.amazon.com/s/ref=rdr_ext_aut?_encoding=UTF8&index=books&field-author=Bruno A. Olshausen
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M noiseϕ = +N NHθ

N = number of measurements
M = number of states, M=1 is possible
Usually N > M and |noise||2 > 0

The model is deterministic, because 
discrete values of Θ are solutions. 

Note:
1) we make no assumption about Θ
2) Each value is as likely as any 

another value

What is the best estimator under these
circumstances?
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Least-Squares Estimator (LSE)

( )
LSE

LSE

ˆ 0

0ˆ
ϕ

ϕ

− =

− =
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Minimizing ELSE with regard to θ leads to

( ) 1

LSE ϕ
−

= T T
nH H Hθ

)

The best what we can do is minimizing noise:
21min

2LSE NE noise=

•LSE is popular choice for model fitting
•Useful for obtaining a descriptive measure 
But 
•LSE makes no assumptions about distributions of data or parameters
•Has no basis for statistics “deterministic model”
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Prominent Examples of LSE
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1
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Pretend we know something about  Θ

We perform measurements for all possible
values of Θ

We obtain the likelihood function of Θ
given our measurements ρ

Note:
Θ is random
ϕ is a fixed parameter
Likelihood is a function of both the 
unknown Θ and  known ϕ

Likelihood ( ) ( )|L pϕ ϕΦ = Φ
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New Goal:
Find an estimator
which gives the most likely 
probability distribution 
underlying  

( ) ( )|L pϕ ϕΦ = ΦN

( )Lϕ Φ
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Maximum Likelihood Estimator (MLE)

( )max |MLE p ϕ= ΦΦ N

)

Goal:  Find estimator which gives the most likely probability distribution 
underlying xN.  

Max likelihood function

( )ln | 0
MLE

d p
d

ϕ
=

Φ =
Φ N

θ θ

θMLE can be found by
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Example I: MLE Of Normal Distribution
Normal distribution

( ) ( )( )22
2

1

1| , exp
2

N

j
p jϕ σ ϕ

σ =

⎡ ⎤
Φ ≈ −Φ⎢ ⎥

⎣ ⎦
∑N

MLE of the mean (1st derivative):
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Normal Distribution

log of the normal distribution (normD)
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Log Normal Distribution
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Example II: MLE Of Binominal Distribution
(Coin Toss)

Distribution function f(y|n,w):
n= number of tosses
w= probability of success

y

f(y|n=10,w=3)

f(y|n=10,w=7)
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MLE Of Coin Toss (cont’d) 

( | 7, 10)MLEL y nΦ = =

Goal:
Given the observed data f (y|w=0.7, n=10), find the parameter ΦMLE that 
most likely produced the data.  
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MLE Of Coin Toss (cont’d)

( ) ( )( ) ( )!| 1
! !

n yynL y
y n y

−Φ = ⋅Φ −Φ
−

Likelihood function of coin tosses

( )

( )( ) ( ) ( )
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log likelihood function
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MLE Of Coin Toss

0
(1 )

MLE
MLE

MLE MLE

y n y
n

Φ
Φ

Φ Φ
−

= = ⇒ =
−

( ) ( )ln
0

1ML MMLE E LE

d L n yy
dΦ Φ Φ

−
= − =

−

Evaluate MLE equation (1st derivative)

According to the MLE principle, the distribution f(y/n) for a given n 
is the most likely distribution to have generated the observed data
of y.
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Relationship between MLE and LSE
Θ is independent of noiseN
MLE and noiseN have the same distribution

noiseN is zero mean and gaussian

Assume:  

( ) ( )| |noisep pϕ ϕΦ = − Φ Φθ N N H

p(ρ|Θ) is maximized when LSE is minimized
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Now, the daemon comes 
into play, but we know
The daemon’s preferences
for Θ (prior knowledge).

New Goal:
Find the estimator which 
gives the most likely 
probability distribution of Θ
given everything we know.  

( ) ( )prior pΦ = Φ

Prior knowledge
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( ) ( ) ( )|Nposterior C L pϕ ϕ ϕ= ⋅ Φ ⋅ Φθ
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Maximum A-Posteriori (MAP) Estimator 

( ) ( )ˆ max |MAP NL pθ ϕ ϕ= N θ

Goal:  
Find the most likely ΘMAP (max. posterior density of ) given ϕ.

Maximize joint density

( ) ( ) ( ) ( )ln | ln | ln 0d L p p p
d

ϕ ϕ∂ ∂
= + =
∂ ∂N Nθ θ θ θ

θ θ θ

θMAO can be found by
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Example III: MAP Of Normal Distribution

We have random sample:

( ) ( ) ( )( ) ( )2 2
2 2

1 1
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The sample mean of MAP is:
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2

2 2
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j
T
μ

ϕ μ
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σ σ =

=
+

Φ ∑MAP

)

If we do not have prior information on μ, σμ inf or T inf 

MAP MLˆ ˆ ˆ, LSE⇒μ μ μ
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Posterior Distribution and Decision Rules

Θ

p(Θ|ρ)

ΘMAPΘMSE
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Decision Rules

θ

Measurements  Likelihood 
function 

Prior 
Distribution

Posterior 
Distrribution

Gain
Function

Result 
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Some Desirable Properties of Estimators I:

 - 0 θE E EΦ = ⇒Φ Φ =
) )

Unbiased: Mean value of the error should be zero

2
- 0 for large NMSE E= ΦΦ →

)

Consistent: Error estimator should decrease asymptotically as number of 
measurements increase. (Mean Square Error (MSE))

2 2 -  - b bMSE E E= Φ +Φ
)

What happens to MSE when estimator is biased?

variance bias
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Some Desirable Properties of Estimators II:

( )( ) 1- -i

T

iki k kE J −Φ Φ= Φ Φ ≥θC %

) )

Efficient: Co-variance matrix of error should decrease asymptotically to its
minimal value for large N
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Example:
Properties Of Estimators Mean and Variance

( )
1

1 1ˆ
N

j
E E j N

N N
μ ϕ μ μ

=

= = ⋅ =∑Mean: 

The sample mean is an unbiased estimator of the true mean 

( ) ( )( )
2

22 2
2 2

1

1 1ˆ
N

j

E E j N
N N N

σμ μ ϕ μ σ
=

− = − = ⋅ =∑Variance:

The variance is a consistent estimator because
It approaches zero for large number of measurements. 
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Properties Of MLE

• is consistent: the MLE recovers asymptotically the true 
parameter values that generated the data for N inf; 

• Is efficient: The MLE achieves asymptotically the 
minimum error (= max. information)
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Summary

• LSE is a descriptive method to accurately fit data to a 
model. 

• MLE is a method to seek the probability distribution that 
makes the observed data most likely.

• MAP is a method to seek the most probably parameter 
value given prior information about the parameters and 
the observed data. 

• If the influence of prior information decreases, i.e. many 
measurements, MAP approaches MLE



UCSF VAMedical Imaging Informatics 2009, Nschuff
Course # 170.03
Slide 32/31

Department of 
Radiology & Biomedical Imaging

Some Priors in Imaging

• Smoothness of the brain
• Anatomical boundaries 
• Intensity distributions
• Anatomical shapes
• Physical models

– Point spread function
– Bandwidth limits

• Etc. 
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Estimation Theory: Motivation Example I
Gray/White Matter Segmentation

Intensity

0.0

0.2

0.4

0.6

0.8

1.0

Hypothetical Histogram

What works better than flipping a coin?

Design likelihood functions based on
anatomy
co-occurance of signal intensities
others

Determine prior distribution
population based atlas of regional intensities
model based distributions of intensities
others
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Estimation Theory: Motivation Example II

D. Feinberg Advanced MRI Technologies, Sebastopol, CA

Goal: Capture dynamic signal on a 
static background

Poor signal to noise

Improvements to identify the dynamic signal:

Design likelihood functions based on
auto-correlations
anatomical information

Determine prior distributions from
serial measurements
multiple subjects
anatomy
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Estimation Theory: Motivation Example III

Goal:
Capture directions 
of fiber bundles

Diffusion Spectrum Imaging – Human Cingulum Bundle

Dr. Van Wedeen, MGH

Improvements to identify  tracts:

Design likelihood functions based on
similarity measures of adjacent 
voxels
fiber anatomy

Determine prior distributions from
anatomy
fiber skeletons from a population
others
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Dr. Ashish Raj,  Cornell U
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MAP Estimation In Image Reconstruction

Human brain MRI. (a) The original LR data. (b) Zero-padding 
interpolation. (c) SR with box-PSF. (d) SR with Gaussian-PSF.

From: A. Greenspan in 
The Computer Journal Advance Access published February 19, 2008
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Improved ASL Perfusion Results 

zDFT = 
zero-filled DFT

By Dr. John Kornak, UCSF
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Bruce Fischl, MGH
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Segmentation Using MLE

A: Raw MRI
B: SPM2
C: EMS
D: HBSA

from
Habib Zaidi, et al, 
NeuroImage 32 
(2006) 1591 – 1607
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Dr. Sarang Joshi, U Utah, Salt Lake City
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Population Shape Regressions Based Age-
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Age = 29                  33                  37                  41                  45                   49
Dr. Sarang Joshi, U Utah, Salt Lake City
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Imaging Software Using MLE And MAP
Packages Applications Languages 

VoxBo fMRI C/C++/IDL 
MEDx sMRI, fMRI C/C++/Tcl/Tk 
SPM fMRI, sMRI matlab/C 
iBrain  IDL 
FSL fMRI, sMRI, DTI C/C++ 

fmristat fMRI matlab 
BrainVoyager sMRI  C/C++ 

BrainTools  C/C++ 
AFNI fMRI, DTI C/C++ 

Freesurfer sMRI C/C++ 
NiPy  Python 
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Literature

Mathematical
• H. Sorenson. Parameter Estimation – Principles and Problems.

Marcel Dekker (pub)1980. 
Signal Processing
• S. Kay. Fundamentals of Signal Processing – Estimation Theory. 

Prentice Hall 1993.
• L. Scharf. Statistical Signal Processing: Detection, Estimation, and 

Time Series Analysis. Addison-Wesley 1991. 
Statistics:
• A. Hyvarinen. Independent Component Analysis. John Wileys & 

Sons. 2001.
• New Directions in Statistical Signal Processing. From Systems to 

Brain. Ed. S. Haykin. MIT Press 2007.
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